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Abstract

Numerous studies have examined the determinants of CO2 emission. However, earlier
research has neglected to analyse the emission of CO2 resulting from the exchange of
innovation technology. The present work contributes to the research stream by examin-
ing the relationship between innovation technology and environmental degradation
in India from 1980 to 2021 during the time period of study. On the basis of the Auto
Regressive Distributive Lag (ARDL) model and the Vector Error Correction (VECM)
Granger Causality approach, the main finding is that innovation technologies are the
primary contributors to India’s long-term CO2 emission. Short-term causality emerges
from one-way causation between innovation technology and CO2 emissions. Addi-
tionally, a long-term feedback hypothesis between energy usage and CO2 emissions is
rejected. Numerous critical tests are conducted to assure the stability of the model and
the dependability of policy-relevant conclusions. This study proposes that the Indian
government should invest more in research and development to increase its innovative
technological power, which would be beneficial for environmental protection.
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1. Introduction

Both economists and eco-activists now consider environmental degradation to be a major topic
of discussion. Deforestation, polluting emissions from the burning of fossil fuels and excessive
use of these are central to the argument that human activity is causing global environmental
change. Wigley [1] stated that a pre-industrial CO2 level somewhere in the range of 260-270 ppmv,
well below the 290 ppmv figure that is more commonly cited. The annual rate of global carbon
dioxide emissions from fossil fuel combustion and industrial processes rose in 2021 to a new
record high. Using the most recent official national data and publicly available energy, economic,
and weather data, the IEA estimated that by 2020, emissions will have increased by 6%, totalling
36.3 Gt. Furthermore, in 2021, global energy consumption is expected to rise by 4.6%, more than
making up for the 4% drop in 2020 and propelling consumption 0.5% higher than in 2019. Global
energy demand is expected to increase by 3.4% in 2020, with nearly 70% of that increase coming
from emerging markets and developing economies [2]. According to Feulner [3], climate change
is the world’s greatest problem in the 21st century. When it comes to global problems, climate
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change is one that cuts across many disciplines. Global water supplies, agricultural output, human
health, and energy infrastructure are just some of the areas that could be affected by climate
change. In turn, how we generate power and nourish ourselves has a major impact on the global
climate.

India has its current focus on a path of economic growth that experts predict will bring change
in economic viability. Current energy consumption in India’s is roughly a third of the global
average and significantly lowers than the developed world’s average. India reliance on coal and
other fossil fuels for energy is substantial. Over the past 15 years, per-capita energy consumption
has more than doubled, but nearly 240 million still lack access to a reliable, affordable energy
source. Over the last decade, India’s energy consumption has increased at about 6% annually.
Although non-fossil fuel production has increased rapidly, the BP Energy Outlook 2035 predicts
that India will have the fastest growth in energy consumption of any major economy. By 2035,
experts predict a 128% increase in global energy consumption [4]. Govindaraju and Tang [5]
found the two-way causal relationship between economic expansion and CO2 emissions, and
between CO2 emissions and coal use. However, only a unidirectional Granger causality links
economic growth and coal consumption in India. Ohlan [6] found a correlation between India’s
trade liberalisation and increased carbon emissions. Sahu et al. [7] found that in India, while
economic globalisation has a positive but insignificant effect on CO2 emissions, other forms of
globalisation, including overall globalisation, social globalisation, and political globalisation, all
have negative effects.

The scale effect, the composition effect, and the technique effect are the three main ways trade
liberalisation can affect the total amount of emissions. First, the scale effect increased economic
activity due to free trade but also increased CO2 emissions. This greater economic activity will
necessitate increased energy consumption, which in turn will increase the emissions of greenhouse
gases. Secondly, the composition effect describes how the structure of a country’s production shifts
as a result of trade opening in response to changes in relative prices, and how this shift affects
emission levels. A country’s comparative advantage determines how its production structure
shifts as it liberalises. Changes in the composition of production in an economy that is opening its
markets to trade may be a reaction to differences in environmental regulations between countries.
Finally, improvements in goods and services production techniques brought about by the technique
effect lead to lower emission intensities in the final output. This is the main way freer trade can
help reduce greenhouse gas emissions [8]. Concerning climate change has been a result of the
substantial increase in international trade and investment flows in recent years. The allocation
of physical resources and the spread of technology worldwide are heavily influenced by foreign
direct investment (FDI), trade, and interaction among countries in other forms, such as intellectual
property rights, royalty and licencing fees. There is a possibility that technology transfer will
increase pollution levels in the environment. Export growth and the resulting economy-wide scale
effect may add to CO2 emissions.

The results of the current study add to the body of knowledge in a number of ways. To
begin, none of the studies in the literature mention the impact of imported technology on CO2
emissions. This study makes an effort to examine the impact of foreign technology on India’s CO2
emissions. The second phase involves new variables to the model, such as energy consumption,
foreign direct investment, and trade, all of which may have an impact on CO2 emissions. To
improve empirical results and resolve the specification problem, this study includes additional
factors in environmental quality assessments. Additionally, policymakers would benefit from
formulating a comprehensive environmental policy for sustainable economic development. Lastly,
we employ innovative and advanced techniques, namely the ARDL bounding testing approach
and the innovative accounting approach.

2



Journal of Asian Energy Studies (2023), Vol. 7, 1-19

The remainder of the study is structured as follows: Section 2 provides a literature review;
Section 3 describes the methodology and model specification; and Section 4 discusses the findings
and provides a conclusion. Section 5 is the study’s conclusion.

2. Literature Review

In recent years, a substantial amount of research has been conducted on the relationship between
energy consumption and carbon emission using various control variables. Multiple econometric
approaches have been used to examine the connection between economic development, energy
consumption, and environmental degradation, with varying conclusions drawn from cross-country
and panel data. Relevant studies have been conducted in Pakistan [9], South Africa [10], Sri
Lanka [11], Turkey [12], Nigeria [13], USA [14], China [15], France [16], Malaysia [17], India [18],
South Korea [19], SAARC nations [20], BRICS countries [21], industrialized and industrializing
countries [22], OECD countries [23], and 106 countries classified according to their income
levels [24]. All of the authors demonstrate that reliance on energy consumption is a significant
cause of carbon emissions.

The connection between energy consumption and CO2 emission has been the subject of
extensive research. Numerous researchers have determined that energy consumption enhances
CO2 emissions which is a potential contributor to environmental pollution. Various econometric
techniques have been used in the literature to test the relationship between energy consumption
and CO2 emission, using time series data and the results indicate that energy consumption
is a potential determinant of CO2 emission [25–27]. Utilizing numerous control variables, the
relationship between energy consumption and CO2 emissions is examined. In addition, previous
research has identified both unidirectional and bidirectional causal relationships between energy
consumption and CO2 emissions. Alam et al. [28], incorporating economic and population growth,
conclude that there is a positive relationship between energy consumption and CO2 emissions
in India over the long term. Moreover the energy consumption bi-directionally Granger causes
carbon emission in short-run. Acaravci and Ozturk [29] utilized an autoregressive distributed lag
(ARDL) bounds testing approach to cointegration to investigate the connection between carbon
dioxide emissions, energy consumption, and economic growth across 19 European countries.
Evidence of a long-run relationship between carbon emissions per capita, energy consumption per
capita, and economic growth is provided by the bounds F-test for cointegration.

Furthermore, studies conducted in Denmark, Germany, Greece, Italy, and Portugal found
a positive long-run elasticity estimate of emissions with respect to energy consumption at the
1% significant level. In Thailand, Boontome et al. [30] applied a causality test to show that the
use of nonrenewable energy sources increased carbon emissions uni-directionally in short-run.
Bildirici [31] found the both the short and long run relationship among energy consumption and
carbon emissions in USA through the use of the bound test method of cointegration. The MWALD
and Rao’s F tests were used to establish the causal connection. There is proof of unidirectional
causality between energy consumption and CO2 emissions, as determined by Rao’s F tests. Waheed
et al. [32] conducted a literature survey and found that higher energy consumption has been
reported as the primary cause of carbon emission in both developing and developed countries.
Gorus and Aydin [33] demonstrated that over the long and intermediate term, energy consumption
has a reciprocal effect on emission levels.

Additionally, short-term evidence supports a unidirectional Granger causality between energy
consumption and emissions in MENA countries. Wang et al. [34] examined the long-run relation-
ship between energy consumption and carbon emission in China by cointegration and examining
the unidirectional relationship between the two variables using the granger causal test. Following
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the same methodology in Indonesia, Hwang and Yoo [35] implied that there is a direct correlation
between increased energy consumption and increased CO2 emissions, and that increased CO2
emissions also stimulate additional energy consumption. Furthermore, Soytas et al. [36] supported
that energy consumption Granger causes carbon emissions in the US. Sharif et al. [37] proved
that all variables are integrated in the long run, as shown by the CIPS unit root test, bootstrap
cointegration, Pedronicointegration, FMOLS, and heterogeneous panel causality methods on
74 nations. The results also demonstrated that the consumption of nonrenewable energy has
a positive impact on environmental degradation. Using time series econometric methodology,
this paper examines the causal relationships between energy consumption, pollution emission,
and economic growth in Nepal. When energy consumption and carbon emissions are used as
dependent variables, both the Johansen cointegration and ARDL (Autoregressive Distributed Lag)
bounds tests indicate the presence of two cointegrating vectors. Granger causality tests indicate
the existence of a long-term bidirectional causal relationship between energy consumption and
carbon emission and vice versa [38].

While FDI is a major contributor to environmental degradation, some studies have shown
conflicting results when it comes to its impact on the state of the environment. In this regard,
Gökmenoğlu and Taspinar [39] examined the impact on FDI on carbon emissions and found The
results of the Toda-Yamamoto causality test indicated a bi-directional relationship between FDI,
energy use, and CO2 emissions in Turkey. Blanco et al. [40] used 18 Latin American countries from
1980–2007 and found causality between FDI in pollution-intensive industries and CO2 emissions
per capita. Omri et al. [41] examined how FDI affects carbon emissions in Europe and Central
Asia, Latin America and the Caribbean, and the Middle East, North Africa, and sub-Saharan
Africa. Their study found bidirectional causality between FDI inflows and CO2 except for Europe
and North Asia. Using Granger causality tests, Hoffmann et al. [42] examined the connection
between foreign direct investment (FDI) and pollution in 112 countries over a 15-28 year period.
The main findings revealed that the two variables have different causality relationships depending
on the level of development in the host country. However, in the cases of India, Iceland, Panama,
and Zambia, the pollution halo hypothesis stating that FDI has positive environmental effects
was supported [43]. Jebli et al. [44], who examined the impact of FDI on carbon emissions in a
panel of 22 Central and South American nations, discovered that FDI contribute to the reduction
of emissions. Rafique et al. [45], using information collected between 1990 and 2017, examined
how FDI has affected carbon emissions in BRICS countries by the Augmented Mean Group
(AMG) estimator and proved that foreign direct investment in BRICS countries has a negative
and statistically significant substantial connection with CO2 emissions. The study utilized the
Dumitrescu and Hurlin panel causality test to determine the direction of causality. There is a
one-way causal relationship between foreign direct investment and carbon emissions, according
to the findings. Prior research has also examined the connection between trade openness and
environmental quality. Conclusions regarding the role of international trade are mixed. In Tunisia,
the long-term estimates of carbon emissions per capita in relation to trade openness were predicted
to be positive [46]. Hossain [47] conducted study for the panel of newly industrialized countries
(NIC) and conclude that this short-term causal relationship between trade openness and carbon
dioxide emissions is unidirectional. However, in the long run, it is determined that trade openness
is generally beneficial. Destek etla. [48] analysed 10 countries in Central and Eastern Europe
to determine how trade openness affects their carbon emissions (CEECs). They found that an
increase of 1% in trade openness resulted in a 0.0686% decrease in carbon dioxide emissions. In
BRICS countries, Sebri and Ben-Salha [49] found the long-run relationship among trade openness
and carbon dioxide emissions by using the ARDL bounds testing approach to cointegration and
the vector error correction model (VECM). The openness of trade has a detrimental effect on CO2
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emissions [50, 51]. In terms of the trade-pollution nexus, the United States of America, Canada,
Iran, and France hold a unidirectional causality running from increased economic growth to
increased trade openness, which in turn leads to increased CO2 emissions [52]. Thailand, Turkey,
India, Brazil, China, Indonesia, and Korea had co-integrated among trade openness and carbon
emission [53]. Moreover, trade openness is not only one of the primary long-term determinants of
carbon emissions, but also has a causal relationship with it.

Based on a review of the existing literature, it is clear that the majority of researchers are inter-
ested in studying the connection between CO2 emissions and energy consumption by employing a
variety of explanatory variables, as well as FDI and trade by utilising panel and cross-sectional data.
However, the allocation of physical resources and the spread of technology around the world are
heavily influenced by international trade and other forms of interaction between countries, such
as intellectual property rights and royalty and licencing fees (a proxy for imported technology). In
the field of environmental pollution, this area of study is still under-researched. Moreover, the
empirical results, based on a case study of the transfer of the passive home concept from Germany
to China, demonstrate that domestic rather than foreign players have determined the scope for col-
laboration and the aim of the technology, leading to the acceptance of a version of the technology
that best suits domestic political-economic objectives [54]. These results provide fresh insights into
the spatial component of socio-technical transitions and imply that low-carbon technology transfer
is becoming geographically complex. Following the methodology of previous studies [55], this
investigation uses multivariate analysis on disaggregated data for imported technology within a
unifying framework to examine the role of imported technology in environmental degradation in
India. The research in this article employs an ARDL-bound testing strategy to determine both
long and short-run estimates for India between the years 1980 and 2020. The VECM Granger
causality method can be used to determine the direction of causality. The validity of the VECM
Granger causality test is evaluated with the help of an innovative accounting approach (IAA).

3. Econometric methodology and data source

The current study aims to analyse how India’s use of imported technology affects its CO2
output. Using the methodology of [51] and [16], the current study employs a multivariate
framework that permits the incorporation of control variables to investigate how the introduction
of new technologies affects environmental degradation. A number of studies have examined the
correlation between pollution as an endogenous variable and a variety of exogenous and control
variables. This study uses the following equation to investigate the connections between India’s
environmental degradation, energy consumption, FDI, and trade.

CO2 =
∫
(E, T, F, I) (1)

This study uses a multivariate econometric framework to examine the interconnections between
imported technology, energy consumption, trade ratio, foreign direct investment, and environmen-
tal degradation, following the lead of [54]. The following are the parameters of the econometric
model used in this investigation:

CO2t = β0 + β1tE + β2tT + β3tF + β4t I + εt (2)

The transformed log-linear functional form of the model is shown below.

LOGCO2t = β0 + β1tLOGEt + β2tLOGTt + β3tLOGFt + β4tLOGIt + εt (3)
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CO2 represents per capita carbon dioxide emissions, E represents per capita energy consump-
tion, T represents trade ratio (sum of export and import), I represents innovation technologies
measured as royalty and licensing fee, F represents foreign direct investment, ε is a residual term,
and t is the period.

Several estimation techniques have been used by researchers to establish cointegration between
CO2 emission and its determinants, such as the residual-based approach by [55] and the full
information maximum likelihood method described by [56].In order to examine the durability
of the above mention test, the third test created by [57] has been used. The advantages of the
autoregressive distributed lag (ARDL) bounds testing approach to cointegration led this study to
use it to investigate whether or not a long-run relationship exists between imported technology
and CO2 emissions. When looking at it from a statistical perspective, an ARDL specification is
the same thing as a standard error correction model. Moreover, it is likely to generate different
standard errors, because ARDL estimates of standard errors are considered unbiased. It is possible
to estimate both the long-run and short-run dynamics simultaneously using the ARDL bound
testing approach by linear transformation. Because of this reason ARDL is better suited for
this study than other cointegration methods. The ARDL bounding testing method is preferred
regardless of whether the variables are I (0) or I (1). Furthermore, the ARDL bound testing strategy
proved especially helpful for this research because it is the most effective method for identifying
the long-term connection even when working with a relatively small data set. The following
clarifies the ARDL bounding testing technique developed for the variable of interest:

∆ log CO2 = βoCO2 +
n

∑
k=1

β1k∆ log CO2(t−k) +
n

∑
k=0

β2k∆ log E(t−k) +
n

∑
k=0

β3k∆ log F(t−k)+

n

∑
k=0

β4k∆ log T(t−k) +
n

∑
k=0

β5k∆ log I(t−k) + δ1co2∆Logco2(t−1)
+ δ2co2∆ log(t−1)

+ δ3co2∆logF(t−1)
+

δ5co2∆ log T(t−1)
+ δ6co2∆logI(t−1)

+ ε1t

(4)

Both the dependent and independent variables in an equation must have the same value. The
following equations represent each independent variable.

∆ log E = βoE +
n

∑
k=1

β1k∆ log E(t−k) +
n

∑
k=0

β2k∆ log CO2(t−k) +
n

∑
k=0

β3k∆logF(t−k)+

n

∑
k=0

β4k∆ log T(t−k) +
n

∑
k=0

β5k∆ log I(t−k) + δ1E∆logCO2(t−1)
+ δ2E∆logE(t−1)

+ δ3E∆ log F(t−1)
+

δ4E∆ log T(t−1)
+ δ5E∆ log I(t−1)

+ ε1t

(5)

∆logT=βoT +
n

∑
k=1

β1k∆ log T(t−k) +
n

∑
k=0

β2k∆ log E(t−k) +
n

∑
k=0

β3k∆ log F(t−k)+

n

∑
k=0

β4k∆logCO2(t−k) +
n

∑
k=0

β5k∆logI(t−k) + δ1TlogT(t−1)
+ δ2T∆logE(t−1)

+

δ3T∆ log F(t−1)
+ δ4T∆logCO2(t−1)

+ δ5T∆logI(t−1)
+ ε1t

(6)
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∆logI = βo I +
n

∑
k=1

β1k∆logI(t−k) +
n

∑
k=0

β2k∆logE(t−k) +
n

∑
k=0

β3k∆logF(t−k)+

n

∑
k=0

β4k∆logT(t−k) +
n

∑
k=0

β5k∆logCO2(t−k) + δ1I∆logI(t−1)
+ δ2I∆logE2(t−1)

+

δ3I∆logF2(t−1)
+ δ4I∆logT2(t−1)

+ δ5I∆logCO2(t−1)
+ ε1t

(7)

∆logF = βoF +
n

∑
k=1

β1k∆logCO2(t−k) +
n

∑
k=0

β2k∆ log E(t−k) +
n

∑
k=0

β3k∆ log F(t−k)+

n

∑
k=0

β4k∆ log T(t−k) +
n

∑
k=0

β5k∆logI(t−k) + δ1F∆logF(t−1)
+ δ2F∆logE2(t−1)

+

δ3F∆logCO2(t−1)
+ δ4F∆logT2(t−1)

+ δ5F∆=logI2(t−1)
+ ε1t

(8)

The ∆ symbol represents the first difference operation, while ε 1 represents the residual
term. An ARDL bounding testing strategy is used to estimate the long-run relationship between
the variables by testing the null hypothesis of no-integration H0 : δ1 = δ2 = δ3 = δ4 = δ5
against alternative null hypothesis H0 : δ1 ̸= δ2 ̸= δ3 ̸= δ4 ̸= δ5. Using a critical value with
an upper bound of I (1) and a lower bound of I (0), the F-value determines whether or not the
null hypothesis of no-integration is rejected. For an inference to be considered conclusive, the
computed F-value must fall between predetermined upper and lower bounds. Without knowing
the order of integration of underlying variables, such as I (1) or I (0), if this value falls below the
lower bound, the conclusion is that there is no co-integration, and if it exceeds the upper bound,
the conclusion is that there is co-integration. Upper and lower bound critical values are available
in the prior literature [57]. Once co-integration has been established, the next step is to choose
the right criteria; in this case, Akaike’s Information Criteria (AIC) is the best fit. When the lag
length has been determined, the next step is to check for co-integration among variables using
the F-statistic. Moreover, Johansen co-integration is used to test the F-statistic reliability. The next
step, after co-integration has been confirmed, is to estimate the long run and short run analysis.
Three robustness tests—the Reset test, the ARCH test, and the LM test—are used in this research
to ensure the model’s stability and the validity of the findings for use in policy-making. Model
stability for policy recommendation is tested using the CUMUS and CUSUMsq tests.

The time range that is represented by the data used for this analysis is 1980–2019. Previous
studies measured CO2 emission using proxies to determine the relationship between technological
innovation and CO2 emission. The Carbon Dioxide Information Analysis Center, Oak Ridge
National Laboratory, and the US Department of Energy’s databases were used to compile the
information on CO2 emissions per capita [58]. Energy consumption in kilogrammes of oil
equivalent per person [59, 60]. In the current study, trade openness data is measured as a proxy of
import + export (percentage of GDP) [46,50]. The number of patents application, both domestically
and internationally, was used as a proxy for technological innovation [58] and it is divided by
population to get the per capita data of innovation. CO2 emissions, energy consumption, trade
openness, and foreign direct investment (FDI) and innovation figures are drawn from the WDI
database.
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4. Empirical Results

4.1. Unit root analysis

The goal of this research is to learn more about how India’s carbon dioxide emissions are affected
by technological innovation. The first premise of the ARDL bound testing procedure is that
the variables of interest are not stationary at order 2, i.e., I (2), which would prevent the ARDL
technique from being used. The unit root test is a necessary tool when dealing with time series
data. Regression analysis results may be spurious if this is not the case. There are two common
unit root tests that can be run to determine if the relevant variables are stationary. Tests such as
the augmented Dickey-Fuller (ADF) [61] and Phillips–Perron (PP) [62] are used in this research.
Although the results in Table 1 suggest that the relevant variables are not stationary at level, the
null hypothesis of stationarity cannot be rejected. Based on these findings, the conclusion is that
all the series are stationary at first difference, rejecting the null hypothesis of non-stationarity
in both the ADF and PP tests. Because all variables are integrated in the first order, the ARDL
approach can be taken.

Some tests are necessary for choosing the propoer lag selection criteria, which are then used to
estimate the long-run relationship using the bound testing method. In this research, the best lag
selection criterion is the Akaike information criterion (AIC). Following [63], the AIC criterion is
used to select the shortest possible lag length value while simultaneously minimising the loss of a
degree of freedom. In comparison to SBC, which yields more effective and reliable results, the
AIC criterion is regarded as superior and effective for capturing dynamic results.

Table 1: Unit root test

Augmented Dickey Fuller Phillips Pearson Order of integration
Variables Level First difference Level First difference

Log CO2 0.5481 0.0380** 0.6219 0.0000*** I (1)
Log E 0.9193 0.0001*** 1.0000 0.0000*** I (1)
Log I 0.8288 0.0002*** 0.8087 0.0002*** I (1)
Log F 0.5920 0.0000*** 0.6707 0.0000*** I (1)
Log T 0.9299 0.0000*** 0.9321 0.0001*** I (1)
Note: *, ** and *** show the level of significance at 1%, 5% and 10% respectively.
Sources: Calculated by authors.

4.2. Bound testing results

Following the methodology of [64], the next step after determining the appropriate lag length is to
investigate the F-value in order to validate the existence of co-integration among variables for the
relationship that exists over the long run. The conclusions drawn from the bound F-statistics are
presented in Table 2. The findings have shown that the calculated value of the F-statistic is higher
than the upper critical boundary at both the 5% and the 10% level of significance, which indicates
that the null hypothesis that there is no co-integration should be rejected. The null hypothesis of
no co-integration is also tested for other equations, which confirm that long-term relationships
between imported technology, energy consumption, and CO2 emissions are all confirmed to be
co-integrated, while the equations for foreign direct investment and trade openness are not.
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Table 2: Results of ARDL bound test

Bound testing to co-integration
Estimated model Optimal lag length F-statistics Remarks

FCO2/[CO2/E, F, IT, TO] (1,1,0,0,0) 20.19878*** conclusive
FEN/[E/CO2, FDI, IT, TO] (1,0,0,0,0) 9.740590*** conclusive
FFDI/[FDI/CO2, EN, IT, TO] (1,0,0,1,0) 2.106738 conclusive
FIT/[IT/CO2, FDI, EN, TO] (1,0,0,0,0) 3.294555* conclusive
FTO/[TO/CO2, FDI, IT, EN] (1,0,0,0,0) 1.727777 non-conclusive
Level of significance Lower bound I (0) Upper bound I (1)
1% Level 3.29 4.37
5% Level 2.56 3.49
10% Level 2.2 3.0
Note: *, ** and *** show the level of significance at 1%, 5% and 10% respectively.
Sources: Calculated by authors.

The results of the F-value test confirm the co-integration of variables. In this study, the
robustness of F-statistics is examined using Johansen co-integration [56]. Johansen co-integration
has resulted in the production of two statistics: trace statistics and Eigenvalues. At the 5% level of
significance, the results of the Johansen maximum Eigen value tests indicate one co-integrated
relationship, as shown by [56, 65]. Results point to the validity and efficacy of the conclusions
reached using the bound test co-integration method. Table 3 displays the results of the Johansen
test.

Table 3: Results of Johansen co-integration

Rank test (trace) Rank test (maximum Eigenvalue)
Rank values Trace statistics Prob. value Maximum eigen Prob. value

r0 = 75.1244 0.0177*** 28.1774 0.2054
r1 ≤ 46.9470 0.0607 19.7482 0.3588
r2 ≤ 27.1988 0.0969 18.4549 0.1138
r3 ≤ 8.7439 0.3896 7.3833 0.4448
r4 ≤ 1 1.3605 0.2434 1.3607 0.2434
Note: *, ** and *** show the level of significance at 1%, 5% and 10% respectively.
Sources: Calculated by authors.

4.3. Result of tests

After the model has been built and the coefficients estimated, it is crucial to verify their validity
and stability. We used the RESET test, the LM test, ARCH test, the R2 and adjusted R2 statistics,
the F-statistics, and the Durban Watson test to evaluate the overall model fitting. Overall, the
model fits the data well if the values of R2 and adjusted R2 are close to 1, and if the F-statistics
are also significant. Moreover, the Durban-Watson tests show that the model is well-specified.
The Breauch-Godfrey LM test was used to identify serial correlation in the estimated model.
Breauch-Godfrey LM test’s inconclusive findings support the absence of a serial relationship.
The normality is confirmed by the null hypothesis results of the Jarque-Bera test. And lastly, a
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null result for ARCH test is not heteroskedasticity. It is safe to say that the model has sufficient
specifications and that the findings can inform policy-making.

Table 4: Results of diagnostic tests

F-statistics Prob.

X2 - Reset 0.335587 0.5666
X2 - ARCH 0.180387 0.6736
LM Test 1.016930 0.2899
R-Square 0.997951
Adj-R-Square 0.997951
F-statistics 2597.256 (0.0000)
Durbin-Watson 2.40
Note: *, ** and *** show the level of significance at 1%, 5% and 10% respectively.
Sources: Calculated by authors.

4.4. VECM Granger causality approach

Once the long- and short-term estimates have been made, the next step is to determine the
direction of causality among variables and to look into the link between the variables by using the
cointegration estimation shown in Table 4 [66]. The presence of cointegration between variables
permits the determination of the direction of causality. Use the VECM Granger causality approach
to determine the direction of causality between innovation technology, energy consumption,
foreign direct investment, trade openness, and carbon emissions. VECM is considered the most
appropriate method for measuring causality. The following model represents the empirical
equation of the Granger causality VECM approach:

log C
log E
log F
log I
log T

 =


β1
β2
β3
β4
β5

 =


β11k β21k β31k β41k β51k
β12k β22k β32k β42k β52k
β13k β23k β33k β43k β53k
β14k β24k β34k β44k β54k
β15k β25k β35k β45k β55k

 =


∆ log C
∆ log E
∆ log F
∆ log I
∆ log T

 =


n1
n2
n3
n4
n5

 = ectit−1 +


ε1t
ε2t
ε3t
ε4t
ε5t


(9)

Long-run causality is indicated if the (error correction term) ECTt-1 is statistically significant
with a negative sign. To determine causality in the short run, we applied the Wald test to
the difference and lag difference coefficients of all independent variables and calculated joint
short-term and long-term causality. The relationship between energy consumption and carbon
emission is shown to be unidirectional in Table 5. Similarly, carbon emissions and technological
advancements share a similar connection. Also, FDI has a one–way relationship with trade
openness. Joint causality analysis findings support findings from both the long- and short-term
causality analyses. Except for energy consumption and trade openness, the results of the causality
analysis in this study confirm the existence of long-run causality among variables (Tables 5 and 6).
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Table 5: Results of VECM Granger causality analysis (short run X2 statistics)

Log C Log E Log F Log I Log T

Log C 4.0522** (0.044) 0.0024 (0.961) 1.053 (0.305) 0.7043 (0.401)
Log E 0.0024 (0.961) 0.0348 (0.852) 1.63E-05 (0.997) 2.3524 (0.125)
Log F 1.3550 (0.244) 0.0174 (0.895) 1.0751 (0.300) 0.0561 (0.812)
Log I 4.1684** (0.041) 0.5510 (0.458) 0.0236 (0.878) 0.3624 (0.547)
Log T 0.1756 (0.675) 0.6061 (0.436) 3.9602** (0.047) 0.4412 (0.507)
Note: The prob. values are given in square brackets. *, ** and *** show the level of
significance at 1%, 5% and 10% respectively.
Sources: Calculated by authors.

Table 6: Results of VECM Granger causality analysis (long run X2 statistics)

∆ Log C ∆ Log E ∆ Log F ∆ Log I ∆ Log T ECT(-1)

∆ Log C
prob.

-0.67355
(0.0529)

-0.000247
(0.9611)

-0.023179
(0.3128)

0.043077
(0.4078)

-0.038189**
(0.0475)

∆ Log E
prob.

-0.030610
(0.9610)

0.003380
(0.8533)

0.000349
(0.9968)

-0.300743
(0.1352)

0.00012
(0.9802)

∆ Log F
prob.

6.400862
(0.2533)

0.148972
(0.8960)

0.791489
(0.3078)

-0.410818
(0.8143)

0.069559**
(0.0460)

∆ Log I
prob.

2.47541
(0.0498)

0.185069
(0.4635)

0.005757
(0.8788)

-0.230238
(0.5516)

-0.481435*
(0.0014)

∆ Log T
prob.

-0.256834
(0.6781)

-0.098121
(0.4421)

-0.037680
(0.0555)

0.056511
(0.5115)

0.52918
(0.4315)

Note: The prob. values are given in square brackets. *, ** and *** show the level of
significance at 1%, 5% and 10% respectively.
Sources: Calculated by authors.

4.5. Innovative accounting approach

Some researchers have pointed out problems with the VECM-based Granger causality approach
[25]. Due to the inability to measure relative strength between variables, the VECM Granger
causality approach produces less credible causal relationships. Using the variance decomposition
technique, this study investigates the stability of causation in this research. Using a vector
autoregressive (VAR) system, this research examines the strength of the connection between
India’s energy consumption, FDI, trade openness, carbon emissions, and innovation technology by
using an innovative accounting approach (IAA). To determine external shocks to each economic
variable, the IAA method is effective. The advantage of the IAA approach is that it disregards series
integration and the issue of endogeneity. Impulse response function and variance decomposition
analysis make up the IAA. It is argued that variance decomposition analysis within the VAR
framework provides superior results to other conventional methods [55]. Table 7 displays the
outcomes of the variance decomposition method.

Table 7 indicates that 34.58% of carbon emissions are explained by factors external to the scope
of this study. The FDI carbon emission share is 0.3%. The contribution of innovation technology is
1.22%, while the contribution of energy consumption and trade openness is approximately 1.38%
and 62.5%, respectively, and the highest of all variables. This may explain why only the effect of
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Table 7: Variance decomposition analysis

Variance decomposition of LNTO:
Period S.E. LNTO LNC LNE LNF LNI

1 0.082695 100.0000 0.000000 0.000000 0.000000 0.000000
2 0.115830 98.86496 0.045989 0.238398 0.319579 0.531076
3 0.141268 96.85224 0.124014 0.840074 0.673364 1.510312
4 0.163192 94.33195 0.204396 1.826400 0.947341 2.689910
5 0.183394 91.49389 0.265578 3.190769 1.134931 3.914830
6 0.202957 88.43959 0.296383 4.903516 1.254601 5.105914
7 0.222657 85.22963 0.295748 6.916992 1.326050 6.231585
8 0.243114 81.90772 0.270639 9.171028 1.364813 7.285800
9 0.264855 78.51219 0.233029 11.59860 1.382082 8.274103
10 0.288346 75.08055 0.196751 14.13133 1.385652 9.205720

Variance decomposition of LNCO2:
Period S.E. LNTO LNC LNE LNF LNI

1 0.021453 3.611662 96.38834 0.000000 0.000000 0.000000
2 0.029919 8.063361 90.94018 0.004331 0.100818 0.891311
3 0.036720 14.51614 83.46211 0.007862 0.144019 1.869865
4 0.043016 22.34059 75.12999 0.006163 0.127606 2.395649
5 0.049239 30.69583 66.76360 0.010134 0.097634 2.432795
6 0.055581 38.84050 58.86457 0.048393 0.086810 2.159725
7 0.062136 46.27527 51.67633 0.161473 0.106719 1.780214
8 0.068956 52.74021 45.26457 0.393813 0.155506 1.445899
9 0.076087 58.14762 39.59393 0.787192 0.225877 1.245384
10 0.083581 62.51009 34.58489 1.376425 0.309830 1.218768

Variance decomposition of LNEU:
Period S.E. LNTO LNC LNE LNF LNI

1 0.084343 4.136589 4.877547 90.98586 0.000000 0.000000
2 0.128477 11.08977 5.872478 80.93539 0.116991 1.985363
3 0.171533 16.65192 6.315754 71.73941 0.313523 4.979393
4 0.215820 20.35236 6.452711 64.71839 0.512900 7.963643
5 0.261762 22.59062 6.446580 59.69985 0.681575 10.58137
6 0.309554 23.83385 6.384365 56.20734 0.812258 12.76219
7 0.359455 24.43601 6.308902 53.80983 0.908508 14.53676
8 0.411814 24.63684 6.240198 52.18177 0.977016 15.96418
9 0.467052 24.59271 6.186765 51.09010 1.024459 17.10597
10 0.525647 24.40424 6.151324 50.37066 1.056472 18.01730

trade openness is detrimental to the environment in India. Similarly, 50.37% of energy consumption
is attributable to its shock. The contribution of foreign direct investment, international trade, and
innovation technology to energy consumption is 1.06, 24.40, and 18.018 respectively. 6.15% of
energy consumption is comprised of CO2. The proportion of CO2 and innovation technology
in FDI is 1.9% and 12.16%, respectively, while the proportion due to its own shock is 45.23%.
The respective percentages of energy and trade are 14.88% and 25.79%. The proportion of FDI
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Table 7: Variance decomposition analysis (cont.)

Variance decomposition of LNFDI:
Period S.E. LNTO LNC LNE LNF LNI

1 0.657309 2.650174 1.170094 0.223336 95.95640 0.000000
2 0.771158 6.260955 1.630605 0.648551 88.82238 2.637510
3 0.830587 9.430841 2.037244 1.428859 81.34924 5.753813
4 0.873377 12.01814 2.340266 2.578433 74.94066 8.122499
5 0.910134 14.27502 2.515349 4.068304 69.46917 9.672161
6 0.945906 16.43964 2.561394 5.852739 64.51082 10.63541
7 0.983960 18.65680 2.495925 7.880630 59.73336 11.23329
8 1.026742 20.97944 2.347954 10.09860 54.95222 11.62178
9 1.076223 23.38289 2.150945 12.45169 50.10802 11.90646
10 1.134040 25.78657 1.937271 14.88480 45.23132 12.16003

Variance decomposition of LNIT:
Period S.E. LNTO LNC LNE LNF LNI

1 0.162557 3.967661 0.144672 1.526500 1.778023 92.58314
2 0.202794 15.07496 0.152220 2.359267 1.731259 80.68230
3 0.229665 27.19797 0.209594 2.803110 1.745055 68.04427
4 0.251894 37.46107 0.337431 2.867149 1.783313 57.55103
5 0.271364 45.27464 0.540980 2.695405 1.824284 49.66469
6 0.288738 51.02159 0.805492 2.432287 1.855129 43.88550
7 0.304531 55.25256 1.103645 2.186546 1.870916 39.58633
8 0.319269 58.41897 1.403875 2.035052 1.871755 36.27035
9 0.333472 60.83443 1.676567 2.033022 1.860004 33.59597
10 0.347643 62.69939 1.897901 2.221731 1.838535 31.34244
Note: Cholesky ordering: LNTO LNCO2 LNEU LNFDI LNIT

caused in innovation technology is 1.83%. CO2 and innovation technology contribute 1.90% and
31.34% respectively to IT. The proportion of innovation technology’s energy consumption is 2.22%,
while the proportion of trade openness is 62.70%. CO2 contributes 0.196751% to trade openness,
while energy consumption and innovation technology contribute nominally 14.13% and 9.21%,
respectively. The portion attributable to its own shock is 75.08%. 1.38% of trade openness is
attributed to FDI. The results of the variance decomposition analysis suggest a causal relationship
between innovation technology, energy consumption, foreign direct investment, trade openness,
and carbon emission. The results of the VECM Granger causality analysis are reliable and can be
used to inform policy.

Turn to the impulse response function, which replaces variance decomposition analysis. The
impulse response function describes how independent variables react (Figure 1). The findings
of impulse response function indicate that India’s carbon emissions are decreasing as a result of
increased energy consumption. The forecast error in FDI increases carbon dioxide gas emissions.
The reaction of innovation technology to CO2 emissions increases up to the 5th unit then start to
decrease. The predicted inaccuracy for CO2 emission by trade openness exhibits a rising trend.
Due to carbon dioxide, the error in energy consumption forecasts remains constant. The reaction
in energy consumption by innovation technology is increasing, while trade openness and FDI
are declining at an increasing rate. Furthermore, the effect of carbon emissions on FDI remains
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Figure 1: Impulse response function

unchanged, whereas the effect of energy consumption decreases across all units. The effect of
innovation technology on FDI decreases up to the third unit then remains constant. In contrast,
the impact of trade openness increases up to the third unit and then becomes stable.

Moreover, In the case of innovative technology, carbon emission response increases up to the
fifth unit and then becomes uniform throughout the remaining units, whereas it decreases at an
increasing rate in response to energy consumption. In contrast, FDI has no effect on technological
innovation. Initially, the impact of trade openness on innovation technology is increasing and
subsequently it levels off. The response of innovation technology to trade openness is favorable
up to the third point, after which it began to fall. Energy usage declines at a decreasing pace in
reaction to trade openness, whereas FDI remains unaffected. Predictions of trade openness based
on carbon emissions continue to be constant.

5. Conclusion

The current study incorporates energy consumption, FDI, and trade openness to analyse the
relationship between innovation technology and carbon dioxide emissions from 1980 to 2019. The
long-run connection between exogenous and endogenous variables is identified using the ARDL
cointegration method. In order to find causal relationships between variables, both long- and
short-term, the VECM Granger causality technique is used. The ARDL bound testing method
is used once the time series’ features have been examined. Diagnostic tests are then used to
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validate findings prior to policy implementation. The validity of the VECM Granger causality test
is evaluated with the use of an innovative accounting method (IAA).

Some of the relationships and interconnections found in this empirical analysis are remarkable.
To summerise the findings, the import of innovation technology is a long-term and short-term
contributor to carbon emissions in India. Second, while the use of energy does have an immediate
impact on CO2 emissions, it has no negative effects on the environment in the long run. Third,
there is no context provided for India’s carbon emissions in terms of how trade openness affects
CO2 emissions either in the long or short term. Foreign direct investment (FDI) has the opposite
effect in India; in the short term, it does not contribute to environmental deterioration, while in
the long term, it has a major impact on carbon emissions. Finally, a short-term study using VECM
Granger causality verifies the one-way causation between energy use and carbon emissions, and a
similar relationship between technological innovation and carbon dioxide emissions. Furthermore,
foreign direct investment is correlated with trade openness in only one direction.

The study’s empirical findings are very interesting. The findings support the idea that India’s
carbon emissions are exacerbated by innovation technology. This means that the latest innovation
technology is not being transferred to India through FDI and commerce. When it comes to cutting
back on carbon emissions, cutting-edge technology is crucial. Nonetheless, it may not always
be the case that advances in technology lead to lower energy use and fewer greenhouse gas
emissions4. India is still working hard to get to the point where it can utilise cleaner technology,
yet the majority of the technology used in manufacturing now is antiquated and inefficient. The
study’s results highlight the importance of importing technology to the attention of policymakers,
who should develop policy to limit the import of obsolete and carbon-intensive technology by
applying dumping tariffs. Emission-focused manufacturing should be subject to strict carbon
pricing regulations. Regarding production and efficiency, global businesses need to catch up to
their domestic counterparts by adopting cutting-edge processes and technology beneficial in terms
of reducing air pollution.

Second, empirical studies demonstrate that energy use is the primary source of CO2 emissions
in the environment. According to the data, India’s long-term and short-term per capita CO2
emissions are unaffected by energy use. It attracts the attention of policymakers to the issue of
unproductive energy consumption. This investigation yields various long-term and short-term
findings. The differing effects for the short-term and long-term motivate politicians to establish
distinct short-term and long-term programmes, such as vision 2025 and vision 2050. In light of
the empirical examination, this study’s findings are generally consistent with the current literature
and provide solid support for policy application. To attain sustainable development objectives, the
Indian government should implement productive energy consumption and trade policies.
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