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Abstract

This research analyses the dynamic spillover effects of indices tracking green, energy,
carbon, and sustainability sector equities to learn more about the interconnectedness
of green finance. The DCC-GARCH model is used to analyze the channels via which
shocks are transmitted between these assets using daily data from Feb 2018 to Aug
2023. Based on our research, there is a sizable amount of cross-market volatility.
Notably, the Indian stock market benefits from the positive spillover impact of the
S&P BSE GREENEX, S&P BSE CARBONEX, S&P BSE ENERGY, and S&P BSE 100ESG
indices. The implications of our findings are of great importance for policymakers and
investors in developing nations such as India. Furthermore, our research contributes
to the growing literature on the interdependence of stock markets. It improves the
understanding of stock markets of developing countries like India in the context of
interconnection and volatility’s influence, enabling informed judgments.
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1. INTRODUCTION

There has been a rapid increase in global greenhouse gas emissions, and they remain too high to
prevent catastrophic and irreversible climate change repercussions. Carbon pricing and market-
based instruments, regulatory action, and targeted assistance for innovation in low-carbon sus-
tainable technologies are all being implemented in more and more countries [1]. The shift to a
green and low-carbon economy offers a lucrative opportunity for businesses, governments, and
investors worldwide [2]. Therefore, urgent legislative action is needed to promote an unprece-
dented global infrastructure and technological transition to address climate change [3]. Energy
efficiency can also play a crucial role in the sustainable energy revolution [4]. Moreover, many
studies highlight the necessity of academic attention to (re)examine the importance of sustainable
energy development [5].

Green bonds are one of the most popular means of funding environment-friendly initiatives.
Funds raised through the sale of fixed-income securities are then put towards environmentally
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responsible endeavors by global and local environmental groups [6]. In 2019, USD 257.7 billion
was issued in green bonds and loans worldwide. The combined issuance of France, China,
and the United States in 2019 comprised 44% of the global issue [7]. The total value of green
bonds issued between 2008 and 2019 was nearly USD 800 billion [8]. Pressure on businesses to
reduce their damaging effects on the environment and boost their impact investment has led to
a recent surge of activity in the green bond markets. Green bonds are recognized as effective
social and environmental instruments for satisfying the growing demand for green investments
worldwide [9]. Various firms related to S&P BSE GREENEX, Energy, CARBONEX, and ESG
indices need to grow further and can retain green bonds to meet their funding needs to expand.

Inadequate global investment in energy over the past few years has made the energy system
extremely vulnerable to disruptions like those seen in 2022. A substantial increase in clean energy
investment flows is necessary to guarantee a safe and effective energy shift. Spending on clean
energy and infrastructure must triple by 2030 for the net zero emission scenario to be feasible, and
there must be a significant increase in investment in emerging markets and developing nations [10].
While fossil fuel investment is projected to rise by 15%, yearly clean energy investment is expected
to see a more significant growth of 24% from 2021 to 2023. This growth will be primarily driven
by expanding renewable energy sources and adopting electric cars. However, because China and
affluent nations contribute to almost 90% of this increase, there is a significant concern that the
transition to clean energy may go slower in other parts of the world, leading to new disparities in
energy access [11].

By analyzing the instabilities of green, carbon emission energy, and ESG indices, this study
gives essential conclusions concerning the link between the above indices and the characteristics
of the green market. In general, asymmetric volatility is present in all index returns, with a greater
sensitivity to negative shocks. The existence of unbalanced volatility between the green bond,
carbon emission, and energy index is therefore also investigated. We employ the DCC-GARCH
model to examine the interplay among markets. Multivariate GARCH models have been used
extensively in prior empirical research [12-16].

The rest of the paper is structured as follows. The "Literature Review" section summarizes the
relationships between green, energy, carbon, and ESG index as other key points from the literature
on green finance. This study’s data and econometric models (DCC-GARCH) are described in
depth in the "Methodology" section. The "Result and Discussion” section discusses the findings
and their significance. The "Conclusion and Policy Implications" portion of the study summarises
the report’s key conclusions and relevance to various stakeholders in green finance.

2. LITERATURE REVIEW

Research on the veracity of the green premium, or geranium, associated with the issuance of green
bonds has been extensive since it makes the issuance of green bonds preferable to the issuance
of common bonds. In particular, 121 European Green Bonds allotted from 2013 to 2017 were
analyzed, and it was discovered that they have economic advantages over conventional bonds.
Companies gain more as a result, and this benefit persists in the ancillary markets [17]. Businesses
that want to fund or reorganize ecologically friendly projects at a lower budget might do so with
the help of green bonds. Spreads on green state bonds are more comprehensive than on non-green
state bonds, whereas spreads on green corporate bonds are narrower. We compare green bonds to
their traditionally issued counterparts and find that green bonds perform better in yield, liquidity,
and volatility. Institutional green bonds, on the other hand, have a negative premium lest the
private issuer is devoted to certifying the "greenness" of bonds, while corporate Green Bonds
deliver a positive return. Therefore, green projects may receive subsidized funding, and green
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bonds may earn a discount [18].

Shah et al. [19] stated that green bonds have a negative premium because their yield is lower
than ordinary bonds. Financial and low-rated bonds are particularly susceptible to this. The
issue size is a potential determinant of the yield of green bonds. Potential factors that could
entice investors to enter the market include the market’s size and the existence of influential
investors. The academic community is emphasizing green stocks and bonds more, especially in
the context of concerns about climate change [20]. Recently, copula-based methods have been
used to examine the asset allocation characteristics of green bonds. According to the study’s
findings, the beneficial effects of green bonds on portfolio management become apparent during
periods of increasing returns and decreasing market volatility. Additionally, precious metals
and green commodities were considered possible safeguards against climate danger [21]. There
was a discernible correlation between the performance of clean energy stocks and that of the
broader market. According to past studies’ findings, green bonds have been observed to show
significant co-movements with other markets, especially during periods of industrial volatility.
These findings suggest that green bonds assist investors in lowering their portfolio’s exposure to
risk [22]. Over the last 10 years, much research has been done on the value of cryptocurrencies as
a secure investment and their critical function in risk mitigation, especially during unpredictable
times like the present pandemic. In contrast, several studies have shown that the volatility of
cryptocurrencies is often higher than that of traditional assets, as per Mohsin et al. [20].

Le et al. [23] examined fintech, green bonds, and cryptocurrencies using daily data from
November 2018 to June 2020. In a volatile market, 21st-century technological assets and conven-
tional common equities are highly correlated, increasing the likelihood of simultaneous losses.
Second, the US dollar, oil, gold, VIX, and green bonds receive volatility shocks, whereas Bitcoin,
MSCIW, MSCI US, and KFTX cause them. Third, short-term volatility signals more than long-term.
Long-term asset holdings lower risks, but short-term exchanges increase volatility. Gold, oil, and
green bonds hedge Fintech, KFTX, and all assets in the sample due to their low shock transmis-
sions and modest volatility spill-over. This study empirically examined the impact of financial
inclusion, green financing, and financial technology on the energy efficiency of economies in the
E7. Researchers have found that these financing strategies notably impact energy efficiency. Green
financing is the most effective and helpful financing tool for energy efficiency, and it also happens
to be the most environmentally friendly [24].

Previous research focuses on the structural features but only analyses price spillovers, ignoring
the repercussions in the return distribution’s second phase. Instead of focusing on the large gap in
understanding how climate bonds and the financial sector interact, asymmetric DCC-GARCH and
BEKK models should show or analyze these stylized features. Given the ongoing discussion over
the interconnectedness and significance of the COVID-19 pandemic, war, and climate change have
been pressing concerns for policymakers since 2021, and stakeholders must tackle this problem.

To summarize, the current body of literature offers valuable insights for investigating how
other factors influence the price fluctuations of green bonds. However, the existing research
primarily relies on the GARCH model to measure the spillover effect of volatility by examining the
significance of correlation coefficients. This methodology does not include the ever-changing and
directing features of the spillover impact. It does need to fully represent the entire link between
the carbon, coal, and green investment markets in terms of volatility spillover.

This study presents multiple significant contributions. We chose the daily data from India’s
carbon, energy, environment, sustainable, and green investment markets as the focus of our study.
We then analyzed the dynamic association and spillover impact using the DCC-GARCH method.
We examined the dynamic features of the spillover across three different time frames: overall
(01/02/2018 to 11/08/23), during the COVID-19 pandemic (27/01/20 to 23/02/22), and during
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times of the Russia-Ukraine war(24/02/22 to 11/08/23).

3. METHODOLOGY

This paper uses an empirical research design to investigate the volatility spillover and correlations
between the indices. Time-varying correlations and volatility spillover effects are investigated
using the Dynamic Conditional Correlation GARCH (DCC GARCH) model. The goals serve as
the basis for the formulation of the hypotheses:

H1: There is a consistent degree of volatility spillover between the S&P BSE Greenex and other
indices included in the present study.

H2: Time-varying and dynamic asymmetry in volatility spillover effects is present between the
S&P BSE Greenex with other indices included in the study.

The aforementioned stock market indices (daily data) are compiled for examination. The S&P
BSE GREENEX Index is used as a proxy for the green bond index [25] in this study, making it
the dependent variable. S&P BSE Energy, S&P BSE CARBONEX, and S&P BSE 100 ESG are the
independent variables in this study. The daily returns are computed to get stationary returns, as:

In(Return;) = In ( P.r 1cer ) (1)
Price;_q

ADF and PP tests are applied and checked to check whether series are stationary based on
Dickey and Fuller [26] and Mackinnon [27] values. Testing for time-varying variance in a sequence
of returns is typically done using the Auto-Regressive Conditional Heteroscedasticity (ARCH) test.

The alternative hypothesis proposes that conditional heteroscedasticity exists, while the null
hypothesis rejects this idea. The LM serial correlation test is employed to inspect the null
hypothesis of no serial correlation in the time series residuals while applying OLS (Ordinary Least
Squares) regression to a time series. Assuming timing effects, specifically, the impact of shocks, or
the occurrence of volatility clustering and leverage effects, is observed. The GARCH model that
provides the most accurate estimation of conditional variances is employed in this scenario.

The examination of impulsiveness in spillover in various domains has been conducted using
a range of models, such as GARCH, BEKK-GARCH, CCC-GARCH,DCC-GARCH and wavelet
analysis. The Dynamic Conditional Correlation GARCH model has been subjected to comparative
analysis by researchers in order to evaluate its efficacy in capturing volatility spillovers, while also
considering the strengths and drawbacks of alternative models.

Bollerslev [28] conducted a study that revealed that the DCC-GARCH model exhibited superior
performance compared to the regular GARCH model in accurately capturing the short-term
coherence of nominal exchange rates, which was attained through the integration of changing
correlations, which are conditional. Engle and Kroner [29] provided empirical evidence to support
the efficacy of the Dynamic CC-GARCH model in catching volatility spillovers within a framework
that involves more than one variable, hence exceeding the computing requirements of the BEKK-
GARCH model.

This paper examines the DCC-GARCH model for analyzing correlations and volatility spillovers
between indices. The DCC-GARCH model performs better than the CCC-GARCH model in
effectively capturing dynamic correlations and volatility spillovers [30]. The DCC-GARCH model
has become a favored option for analyzing volatility spillovers within the range of available
models. This model integrates the adaptable nature of the GARCH model in representing
individual volatilities with the capability to encompass time-dependent conditional correlations.
The DCCGARCH model incorporates bidirectional spillovers and contemporaneous market
interactions by estimating the dynamic conditional correlation matrix [31]. The multidimensional
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character of this approach allows for the concurrent investigation of many variables, which in turn
provides a comprehensive perspective on the transmission of precariousness.

Multivariate financial time series data can be estimated as cross-asset correlations and the
spillover effect of volatility with the DCC-GARCH model [32]. The model has two parts: the first
determines the GARCH parameters, and the second establishes the time-varying correlation.

Two steps make up this model: first, the GARCH parameters are determined, and then the
time-varying correlation is specified.

The equation for the time-varying correlation matrix in the DCC-GARCH model is as follows:

R} = DyQiD; @)

where R} is an important factor in estimating the correlation between variables. D; consists of
a diagonal matrix where the square roots of the conditional variances are placed on the diagonal.
Q; The conditional covariance matrix is an important factor to consider.

The diagonal matrix of the conditional variance is:

D; = diag (ﬁ) ©)

o(i,t)? = w; + ae(i,t —1)% + Bio(i,t — 1)? (4)

where o (i, t) is the conditional volatility refers to the variability of the return. w;, «;, and p; are
GARCH model parameters.

The GARCH model exhibits stationarity when the total of a; and f; is below one, indicating
that the volatility of shocks reverts and diminishes with time [33]. Therefore, it must be ensured
that each cofficient>/=0 and total< 1. The matrix representing the covariance between variables
under certain conditions is as follows:

Q =Q Q! (5)

Qi ={(1—a—p)O} + {me_1)el, 1y} +pQu-1) (6)

where Qj is the matrix of conditional covariance. Q is the matrix of unconditional covariance.
« and f are parameters to determine extent to which the prior covariance matrix and the current
squared residuals influence the update of Q).

4. RESULTS

The obtained data from several stock indices within the sample were analyzed in order to
determine their characteristics. Descriptive statistics pertaining to the daily log returns of the stock
indexes taken in the present study are shown in Table 1.

The data’s central tendency, dispersion, and normalcy have been evaluated using descriptive
statistics, including mean, standard deviation, skewness, kurtosis, and J-B test. The mean denotes
the average assessment of a series. On the other hand, the standard deviation quantifies the
extent to which individual items in the series deviate from the mean. A higher standard deviation
indicates a greater degree of variability within the series. Doane and Seward expounded upon
the concept of skewness [34]. In a similar vein, an examination of the notion of kurtosis as a
statistical instrument is employed to quantify the degree to which the tail of the distribution
diverges from a normal distribution [35]. The author analyses multiple estimating approaches and
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Table 1: Descriptive details of variables included in study

Stock indices Mean Std. dev  Skewness Kurtosis

Descriptive facts of the overall timeframe

DCARB 0.000429 0.011758  -1.60584  24.70308
DENERGY 0.000501 0.016183  -0.4816 12.97075
DESG 0.000477 0.011909 -1.45731  22.53486

DGREEN 0.000419 0.011820 -1.29853  18.00183

Descriptive facts of the Covid timeframe
DGREEN 0.000897 0.014982  -1.66565 17.67111

DCARB 0.000695 0.015567  -1.89178  20.76551
DENERGY 0.000766 0.020331  -0.46574  11.84569
DESG 0.000792 0.015767 -1.70778  18.93907

Descriptive facts of the War timeframe
DGREEN 0.000329 0.010094 -0.63635 5.264189

DCARB 0.000386  0.00914  -0.53025  5.876375
DENERGY 0.000312  0.01237  -0.48764  5.660627
DESG 0.000325 0.009296  -0.55885  5.768438

offers significant insights into understanding diverse kurtosis values. The distribution exhibits
mesokurtosis, characterized by a standard normal curve when the kurtosis coefficient K = 3.
It displays leptokurtosis, indicating a peaked curve when K > 3. Conversely, the distribution
demonstrates platykurtosis, signifying a flatter curve when K < 3.

The descriptive statistics analysis of all three time periods shows that all variables exhibit a
negative skewness. This shows that the indices included in the study possess a longer left tail.
Additionally, the kurtosis values suggest that they all are leptokurtic.

Table 2 displays the outcomes of the Augmented Dickey-Fuller (ADF) test and Phillips-Perron
(PP) test conducted to assess the volatility of stock exchanges. The results suggest that the
logarithmic returns of the stock indices for S&P BSE GREENEX, S&P BSE CARBONEX, S&P
BSE 100ESG, and S&P BSE ENERGY exhibit stationarity, as evidenced by p-values, which is
below the significance level of 0.05 (highlighted by ***) in both the ADF and PP tests. Once the
data has achieved stationarity, we can conduct more analysis. The Autoregressive Conditional
Heteroskedasticity (ARCH) model is frequently utilized to analyze volatility in a time series
and predict future volatility. This analysis offers valuable perspectives on forthcoming volatility
patterns. The current research used the ARCH-LM test statistics to evaluate the null hypothesis
that no ARCH effects exist. Engle and Bollerslev, both esteemed sources, examine using the
ARCH-LM test in studying volatility and investigating ARCH effects.

Tab. 3 shows that the volatility of all stock indices exhibits significant ARCH effects (p-values
below 0.05). So, the GARCH model is used to forecast the direction and variability of stock
markets.

The findings from the analysis using symmetric GARCH are displayed in Table 4. When
analyzing the GARCH model, it is important to consider and present the values of &, 5, and
« + B. The combined values for all stock indices” volatility are positive and below 1. There
is a phenomenon of time waning in the perseverance of volatility. Considering the current
circumstances, the level of volatility is expected to decrease.

Next, the Dynamic Conditional Correlation (DCC) GARCH method is utilized to measure
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Table 2: PP and ADF test results of variables included in study

Stock Indices Dickey-Fuller t-statistics = P-value* PP t-statistics P-value*

Unit root of the overall timeframe

DCARB -12.693 0.0000%** -38.6584 0.0000%**
DENERGY -38.1674 0.0000%** -38.2053 0.0000%**
DESG -12.8674 0.00007%** -38.6001 0.0000%**
DGREEN -37.7942 0.0000%** -37.9692 0.0000%**
Unit root of the Covid timeframe

DGREEN -23.4198 0.0000%** -23.3715 0.0000%**
DCARB -23.988 0.0000%** -23.9167 0.0000%**
DENERGY -24.518 0.00007%** -24.4946 0.0000%**
DESG -23.8697 0.0000%** -23.8252 0.0000%**
Unit root of the War timeframe

DGREEN -18.0375 0.0000%** -18.0371 0.0000%**
DCARB -19.2385 0.0000%** -19.2147 0.0000%**
DENERGY -17.8278 0.00007%** -17.8287 0.0000%**
DESG -19.1691 0.0000%** -19.15 0.0000%**

Table 3: ARCH LM test results

Stock Exchange Chi-square  Prob*
ARCH LM value of the whole timeframe

DGREEN 17.27413 0.0000
DCARB 37.07866 0.0000
DENERGY 103.4930 0.0000
DESG 44.32709 0.0000
ARCH LM value of the Covid timeframe
DGREEN 4.127091 0.0427
DCARB 10.59753 0.0000
DENERGY 19.69983 0.0000
DESG 12.85892 0.0004
ARCH LM value of the War timeframe
DGREEN 12.12923 0.0000
DCARB 38.92323 0.0000
DENERGY 22.09912 0.0000

DESG 33.82684 0.0000
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Table 4: GARCH model findings

Stock Indices

& p

a+p

Result of the whole timeframe

DGREEN 0.115277  0.846417 0.961694
DCARB 0.114549 0.866131 0.980680
DENERGY 0.110547 0.847010 0.957557
DESG 0.106616 0.871256 0.977872

Result of the Covid timeframe

DGREEN 0.132041 0.810114 0.942155
DCARB 0.122453 0.853890 0.976343
DENERGY 0.122565 0.811664 0.934229
DESG 0.118263 0.859869 0.978132

Result of the War timeframe

DGREEN 0.118119 0.826004 0.944123
DCARB 0.022965 0.971204 0.994169
DENERGY 0.085596 0.895585 0.981181
DESG 0.019733  0.974506 0.994239

the transmission of effects across two indexes. The findings of DCC-GARCH are displayed in
Table 5. The total of estimates shown in Table below demonstrates the correlation of the S&P BSE
GREENEX with S&P BSE CARBONEX, S&P BSE 100ESG, and S&P BSE ENERGY. This correlation
is indicated by the combined estimates of a;.. and B .., which are both smaller than one.

Table 5: DCC GARCH model results

Stock exchange Sum of estimates a . ;p-value B;..:p-value
Result of the Whole timeframe

DGREEN and DCARB 0.9575 0.000 0.000
DGREEN and DENERGY 0.953 0.000 0.000
DGREEN and DESG 0.954 0.000 0.000
Result of the Covid timeframe

DGREEN and DCARB 0.938 0.000 0.000
DGREEN and DENERGY 0.916 0.017 0.017
DGREEN and DESG 0.926 0.000 0.000
Result of the War timeframe

DGREEN and DCARB 0.988 0.255 0.000
DGREEN and DENERGY 0.922 0.240 0.000
DGREEN and DESG 0.986 0.335 0.000

The above analysis reveals that a ;.. values for all pairs of the S&P BSE GREENEX with various
other Indian stock indices are positive, but the values are minimal. This indicates a regular
volatility spillover between the S&P BSE GREENEX and S&P BSE CARBONEX, S&P BSE ENERGY,
and S&P BSE100ESG. Nevertheless, the p-values are near or equivalent to 0 for the complete time
frame and for the Covid time frame (implying that these are significant). However, they are greater
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than .05 for the war timeframe, indicating that these estimates lack statistical significance for this
period. This implies that the observed spillover could be attributed to random chance rather than
a genuine correlation for the war time period.

The estimates of By, for all combinations of S&P BSE GREENEX with other Indian indices
are positive and significant in size. The p-values for these estimates are nearly zero, indicating
their statistical significance. This suggests a potential for volatile and fluctuating imbalances in
the transmission of volatility effects between the two indices, a finding that could have significant
implications for the Indian stock market.

Correlation is a standardized measure of the strength and direction of the linear relationship
between two variables. A correlation of 1 indicates a perfect positive linear relationship, -
indicates a perfect negative linear relationship, and 0 indicates no linear relationship. The DCC
correlation graph reflects how the relationships between variables change over time.
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Figure 3: DCC conditional correlation of DESG and DGREEN

For the overall timeframe, if we look at the DCC conditional correlation graphs (Fig 1, 2, and 3)
of GREEN with other variables, two characteristics can be observed. Firstly, the value is dynamic,
and secondly, the relation is strongest with DCARB, less strong with DESG, and even less strong
with ENERGY. Volatility clustering can also be observed.

Covariance measures how two variables move together. Positive covariance indicates that the
variables tend to move in the same direction, while negative covariance indicates they move in
opposite directions. The DCC model takes into account the dynamic nature of these covariances,
allowing us to see how they fluctuate over time.

For the overall timeframe, if we look at the DCC conditional covariance graphs (Figs. 4, 5, and
6) of DGREEN with other variables, we can observe that the variables tend to move in the same
direction. Sudden shifts in the graphs of the war timeframe suggest changes in the underlying
relationships between variables. This could be driven by economic events, policy changes, or other
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external factors.

In summary, there is an indication of a steady amount of volatility spillover among the indices
described above; the significant p-value for the a .. estimates and ;.. estimates indicates that this
spillover has a significant economic impact. However, the B, estimates are more extensive than
a4, estimates, suggesting that there is some asymmetry in the volatility spillover effects, albeit
these impacts may be relatively moderate in scale.

5. CONCLUSION

Central to this paper is the S&P BSE GREENX index, a key proxy for India’s green bond stock
market. Its analysis provides a crucial lens to understand volatility and the intricate relationships
among variables in our study. We delve into the volatility, spillover effects, and linkages of the
S&P BSE GREENX index, along with several other national stock indices, using GARCH models.

The DCC GARCH study uncovered several noteworthy insights. They draw attention to the
growing interconnectedness of national financial markets and the consequent ease with which
volatility can spread from one market to another. Economic and political developments on a
worldwide scale, as well as the mood of investors, all have a role in the spread of volatility.
Nevertheless, it is crucial to bear in mind that the economic impact of these outcomes may
be mitigated by implementing efficient market mechanisms, arbitrage opportunities, and risk
management tactics used by institutions and market participants. The significant p-values for DCC
see asymmetry in the volatility spillover effects across time. This finding suggests that volatility
transmission can fluctuate in size and direction over time. An important factor in determining
the degree of asymmetry in spillover effects includes market conditions, investor behavior, and
individual occurrences. During increased uncertainty or financial crises, spillover effects might be
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more pronounced and unevenly distributed.

The exact time frame and subset of stock indices used in this analysis must be recognized
as caveats. There is also the possibility that exclusive emphasis on symmetric volatility models
understates the complexity of market dynamics. Using more complex models and different
econometric methods might yield more information about volatility spillovers.

While both the S&P BSE GREENX and national stock indices demonstrate volatility spillover,
their economic impact may be relatively low. Given the asymmetry and volatility transmission’s
volatility, it becomes imperative to grasp market dynamics and implement effective risk man-
agement strategies. The causes of volatility spillovers and their effects on market participants
and policymakers should be the focal point of future research, underscoring the urgency and
importance of this topic.
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